

Available online at www.sciencedirect.com

Journal of Catalysis 224 (2004) 473-478

Research Note

JOURNAL OF CATALYSIS

www.elsevier.com/locate/jcat

The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst $\stackrel{\text{\tiny{}}}{\approx}$

Xiaowei Chen, Tao Zhang,* Mingyuan Zheng, Zili Wu, Weicheng Wu, and Can Li*

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, PO Box 110, Dalian 116023, China Received 14 November 2003; revised 10 February 2004; accepted 10 February 2004

Abstract

The catalytic properties of the passivated, reduced passivated, and fresh bulk molybdenum nitride for hydrazine decomposition were evaluated in a microreactor. The reaction route of hydrazine decomposition over molybdenum nitride catalysts seems to be the same as that of Ir/γ -Al₂O₃ catalysts. Below 673 K, the hydrazine decomposes into N₂ and NH₃. Above 673 K, the hydrazine decomposes into N₂ and NH₃ first, and then the produced NH₃ further dissociates into N₂ and H₂. From the in situ FT-IR spectroscopy, hydrazine is adsorbed and decomposes mainly on the Mo site of the Mo₂N/ γ -Al₂O₃ catalysts.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Molybdenum nitride; Hydrazine decomposition; FT-IR spectroscopy; Hydrazine adsorption

1. Introduction

Recently, the catalytic performances of transition metal nitride and carbide catalysts for hydrazine decomposition have been studied because of their low cost and platinumlike behavior in catalysis [1–6]. Transition metal nitride and carbide catalysts have the potential to substitute for the traditional noble metal catalyst (20–40 wt% Ir/Al₂O₃), which has been widely applied to hydrazine decomposition in space technology since the 1970s [7–10].

In 1997, hydrazine decomposition over molybdenum nitride and tungsten carbide catalysts was reported for the first time [1]. Their catalytic properties were similar to those of the iridium catalyst in a thruster. Three years later, tungsten nitride and niobium nitride catalysts were also studied for hydrazine decomposition reaction. The activity of niobium nitride was lower than that of tungsten nitride and iridium catalysts [2]. Moreover, alumina-supported molybdenum nitride and carbide catalysts are active as Ir catalysts for hydrazine decomposition in the thruster [5,6]. Generally speaking, there are two typical reaction routes for hydrazine decomposition as depicted in Eqs. (1) and (2) [8,9,11]. The produced ammonia decomposes further into nitrogen and hydrogen at elevated temperatures according to Eq. (3). Eq. (4) describes the overall reaction of hydrazine decomposition. In Eq. (4), X is defined as the selectivity of hydrazine decomposition, which is the decomposition percentage of hydrazine followed by Eq. (1):

$N_2H_4 = N_2 + 2H_2,$ (1)	$N_2H_4 = 1$	$_{2} + 2H_{2}$,		(1)
----------------------------	--------------	-------------------	--	-----

 $3N_2H_4 = N_2 + 4NH_3, (2)$

 $2NH_3 = N_2 + 3H_2,$ (3)

$$3N_2H_4 = 4(1 - X)NH_3 + (1 + 2X)N_2 + 6XH_2.$$
 (4)

It has been reported that the reaction route of hydrazine decomposition depends on the metal and the temperature range [11]. For instance, the main reaction over Ir, Ni, Co, Ru, Ag, and Cu catalysts proceeds through Eq. (2), while reactions (1) and (2) can take place over Rh, Pt, and Pd catalysts at the same time between 333 and 433 K [3]. Furthermore, the products of hydrazine decomposition over tungsten carbide catalysts are nitrogen and ammonia, suggesting that the reaction route is through Eq. (2) [3].

Although the catalytic performances of transition metal nitrides and carbides for hydrazine decomposition have been studied extensively, little attention has been paid to the intrinsic activity, reaction route, and active site on transition

 $^{^{\}diamond}$ This work was supported by a grant from the Natural Science Foundation of China (NSFC) for Outstanding Youth (No. 20325620).

^{*} Corresponding authors.

E-mail addresses: taozhang@dicp.ac.cn (T. Zhang), canli@dicp.ac.cn (C. Li).

metal nitride and carbide catalysts. In this work, the catalytic activities of passivated, reduced passivated, and fresh molybdenum nitride catalysts for hydrazine decomposition evaluated in a microreactor are compared in order to correlate the catalysis nature and surface chemistry of molybdenum nitride catalysts. FT-IR spectroscopy, combined with the adsorption of probe molecules, has been employed to characterize the surface of molybdenum nitride catalysts [12–14]. The hydrazine adsorption and decomposition over a Mo_2N/γ -Al₂O₃ catalyst were investigated by in situ FT-IR spectroscopy for the first time. The reaction route of hydrazine decomposition over molybdenum nitride catalyst is also proposed.

2. Experimental

2.1. Catalyst preparation

Bulk molybdenum nitride catalyst was prepared by temperature-programmed reaction of MoO₃ and ammonia (\geq 99.99%). The temperature was increased from room temperature to 573 K at a rate of 5 K/min and then to 973 K at a rate of 1 K/min, and finally was kept at the terminal temperature for 2 h. The nitrided sample was cooled to room temperature in a flow of ammonia and passivated with a mixture of 1 vol% O₂/N₂ to avoid the violent oxidation of the prepared catalyst before exposure to air. The BET specific surface area of the passivated bulk Mo₂N is 104 m²/g. The XRD result shows that the main phase of this sample is γ -Mo₂N.

The supported Mo₂N/ γ -Al₂O₃ (8.7 wt%) catalyst was synthesized by nitriding MoO₃/ γ -Al₂O₃ precursor with ammonia. The nitrided and passivated procedures are the same as those for the bulk molybdenum nitride sample. The MoO₃/ γ -Al₂O₃ precursor was prepared by the incipient wetness method using an aqueous (NH₄)₆Mo₇O₂₄·4H₂O solution and γ -Al₂O₃, followed by drying at 393 K for 12 h and calcination at 773 K for 4 h. The BET specific surface area of γ -Al₂O₃ is 198 m²/g.

A commercial 31.6 wt% Ir/Al₂O₃ catalyst with BET specific area of 164.9 m²/g was used and compared with the molybdenum nitride catalyst in the catalytic activity test and NH₃-TPD experiment. In order to obtain good transmission in IR measurements, Ir/Al₂O₃ and Mo₂N/Al₂O₃ with lower metal loadings (7.7 and 8.7 wt%, respectively) were used. The 7.7 wt% Ir/ γ -Al₂O₃ catalyst was prepared by the incipient wetness method using an aqueous solution of H₂IrCl₆ and γ -Al₂O₃ (198 m²/g), and then dried at 393 K for 12 h and calcinated at 673 K for 4 h.

2.2. Catalyst tests

The catalytic activities were evaluated in a fixed-bed continuous flow microreactor. The temperature of liquid hydrazine remained at 303 K and a flow of Ar gas was passed through the liquid hydrazine. The feedstock consists of about 3 vol% N₂H₄ in Ar. The space velocity of the N₂H₄/Ar mixture was 17,000 h^{-1} . A 0.04 ml catalyst and 0.26 ml silica were mixed together and placed in the quartz reactor. Different activation procedures were used. Before the reaction test, the fresh Mo₂N was obtained by renitriding the passivated Mo₂N through a flow of ammonia (\geq 99.99%). The flow rate of ammonia is 100 ml/min. The temperature was raised to 973 K with a rate of 10 K/min and held at this temperature for 1 h. The passivated Mo₂N catalyst was reduced by H₂ at 773 K for 1 h and is called reduced passivated Mo₂N catalyst. The 31.6 wt% Ir/Al₂O₃ catalyst was also reduced by H₂ at 773 K for 1 h before the catalytic test. The initial reaction temperature was 303 K and was gradually increased until N2 and H2 were detected as the main products of reaction.

The feedstock and the product analysis were carried out using an on-line gas chromatograph (Agilent-6890) equipped with a thermal conductivity detector and an automatic injection valve. The carrier gas is argon. Separation of the products is achieved using a Chromosorb 102 column and a 13 X molecular sieve column before the detector.

2.3. NH₃-TPD characterization

Catalysts (200 mg) were reduced at 773 K for 1 h and then were flushed for 0.5 h at 773 K with He. When the temperature was decreased to room temperature, NH₃ was injected using a syringe until saturation. During the TPD process the desorbed products were monitored by TCD and a mass spectrometer (Omnistar) at the same time. The signals of m/e = 2, 14, 15, 16, 17, 18, and 28 were detected simultaneously.

2.4. FT-IR studies

All the infrared spectra were collected at room temperature on a Fourier transform spectrometer (Nicolet Impact 410) with a resolution of 4 cm^{-1} and 64 scans in the region 4000–1000 cm⁻¹. A passivated 8.7 wt% Mo₂N/ γ -Al₂O₃ sample was pressed into a self-supporting wafer and put into a quartz IR cell with CaF2 windows. The passivated sample was heated in ammonia from room temperature to 623 K at a rate of 10 K/min, and then to 723 K at a rate of 1 K/min, further from 723 to 903 K at a rate of 3 K/min, and then held at this temperature for 1 h. The passivated sample renitrided by NH₃ in the IR cell is called fresh Mo₂N/ γ -Al₂O₃ sample, while the passivated sample treated with H₂ at 773 K for 1 h is denoted as reduced passivated Mo_2N/γ -Al₂O₃. Before adsorption the as-prepared sample was held in vacuum at 773 K for 1 h and then cooled to room temperature. All the spectra were obtained at RT after the system was evacuated at 10^{-2} Pa.

3. Results and discussion

Previous literature shows that the surface of fresh, reduced passivated, and passivated molybdenum nitride catalyst is quite different [12,13]. However, most studies about the catalytic decomposition of hydrazine over passivated transition metal nitrides and carbides were investigated in thrusters on which there is a thin oxynitride or oxycarbide layer on the surface of the catalyst [1,2,4–6]. In order to gain sight into the intrinsic catalytic property of molybdenum nitride catalyst, the catalytic activities of passivated, reduced passivated, and fresh bulk Mo₂N catalysts for hydrazine decomposition versus reaction time at 303 K were compared in the microreactor (Fig. 1). It can be seen that the conversion of hydrazine over the passivated Mo₂N catalyst is only about 20% at the beginning and then decreases slightly with reaction time. The hydrazine conversion declines to 7% after 240 min on stream. After the passivated Mo₂N catalyst was reduced with H₂ at 773 K for 1 h, the catalytic activities for hydrazine decomposition increase significantly. The hydrazine conversion is around 90% and then tends to be stable at the level of 80%. It was reported that after the passivated Mo₂N sample was renitrided at 973 K, the BET specific surface area, the crystal structure, and the H₂ uptake characteristics are similar to those of the fresh one [12-15]. As seen in Fig. 1, the conversion of hydrazine over a fresh Mo₂N catalyst remains 100% in the initial 20 min on stream, and then decreases slightly with the increase of reaction time. This result indicates that there is no big difference between the fresh and the reduced passivated Mo₂N catalysts. However, the catalytic activities of the passivated Mo₂N catalyst are relatively lower than those of the fresh Mo₂N catalyst. The lower activity of the passivated Mo_2N catalyst is due to the passivated procedure, which leads to great change on the surface of the Mo₂N catalyst.

As noted in Section 1, hydrazine decomposes into hydrogen, nitrogen, and ammonia by two reaction routes. In

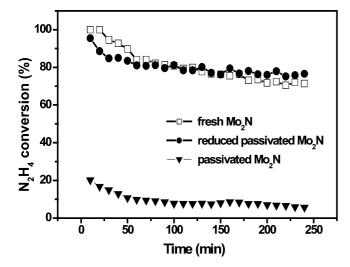


Fig. 1. Hydrazine decomposition over fresh, reduced passivated, and passivated bulk Mo_2N catalysts at 303 K.

order to know the reaction route of hydrazine decomposition over molybdenum nitride catalysts, thermal decomposition and catalytic decomposition over the commercial Ir/γ - Al_2O_3 catalyst and fresh bulk Mo₂N catalyst are shown in Fig. 2.

Without any catalyst, no reaction occurs when the reaction temperature is below 473 K. As soon as the reaction temperature is up to 473 K, hydrazine begins to decompose into N₂ and NH₃. The conversion of hydrazine increases with increasing reaction time. Hydrazine decomposes completely at 513 K. When the reaction temperature is increased gradually, H₂ begins to appear and the selectivity to reaction (1) increases. The selectivity to H₂ is about 15% at 973 K. For the thermal decomposition of hydrazine, the main reaction is reaction (2) below 873 K.

The hydrazine conversion is 100% over 31.6 wt% Ir/Al_2 -O₃ catalyst even at 303 K. Below 573 K, the main products of hydrazine decomposition are N₂ and NH₃, and then the selectivity increases with increasing reaction temperature. N₂, H₂, and NH₃ exist in the products of hydrazine decomposition at the same time. When the temperature is up to 723 K, NH₃ vanishes, and the selectivity of the catalyst is

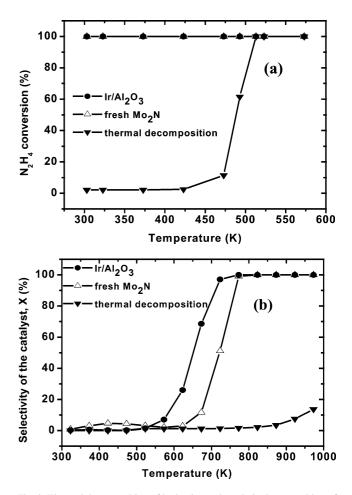


Fig. 2. Thermal decomposition of hydrazine and catalytic decomposition of hydrazine on fresh bulk Mo₂N and 31.6 wt% Ir/γ -Al₂O₃ catalysts: (a) hydrazine conversion, (b) selectivity of hydrazine decomposition.

100%; that is, hydrazine decomposes mainly through reaction (1). Similar to the Ir/γ -Al₂O₃ catalyst, the main products are N₂ and NH₃ below 673 K over fresh Mo₂N catalyst and then the selectivity of the catalyst begins to increase with increasing reaction temperature. H₂ starts to be produced when the temperature is above 773 K and the hydrazine decomposition is mainly followed by reaction route (1).

The produced ammonia could decompose into nitrogen and hydrogen at elevated temperatures. It has been reported that both Ir/γ -Al₂O₃ and transition metal nitrides are excellent catalysts for NH3 decomposition [16-20]. In order to make sure that the produced ammonia decomposes into N₂ and H₂ at the elevated temperatures, NH₃-TPD over y-Al₂O₃, commercial 31.6 wt% Ir/Al₂O₃, and bulk Mo₂N catalysts were studied. As seen in Fig. 3, the maximum NH_3 desorption (mass = 16) appears around 370 K on the γ -Al₂O₃ support. No N₂ (mass = 28) and H₂ (mass = 2) desorption peaks are observed. NH₃ desorbs from the Ir/γ -Al₂O₃ catalyst from 330 to 430 K. The desorption of N₂ commences in the temperature region of 500-700 K; meanwhile, a H₂ desorption peak appears. Therefore, the desorption peaks of N₂ and H₂ are attributed to NH₃ decomposition on Ir/y-Al₂O₃ catalyst. NH₃-TPD for reduced passivated bulk Mo₂N is also shown in Fig. 3. Although there are two kinds of NH₃ desorption peaks in the low temperature range (300–600 K), which are different from the Ir/Al₂O₃, the desorption of N₂ and H₂ can also be found in temperatures higher than 600 K. The N2 desorption between 600 and 800 K is accompanied by H₂ desorption. It must come from the decomposition of NH_3 . On the other hand, the N_2 desorption peak at temperatures higher than 800 K should be the result of Mo₂N decomposition. The NH₃-TPD results suggest that there are active sites for NH₃ decomposition on both the Ir/γ -Al₂O₃ and Mo₂N catalysts, and also at elevated temperatures the produced NH₃ really decomposes into N₂ and H₂. The similar product distributions of hydrazine decomposition and similar NH₃-TPD profiles over Ir/γ -Al₂O₃ and molybdenum nitride catalysts indicate that hydrazine decomposition experiences similar reaction routes on Ir/Al₂O₃ catalysts and fresh Mo₂N catalysts. At lower temperatures, hydrazine decomposes into nitrogen and ammonia. Above 673 K, hydrazine decomposes into nitrogen and ammonia. In the second step the produced ammonia dissociates into nitrogen and hydrogen.

Fig. 4 shows the IR spectra of adsorbed NH₃ and N₂H₄ on γ -Al₂O₃, N₂H₄ on 7.7 wt% Ir/ γ -Al₂O₃ catalyst, and gaseous N₂H₄. The gas phase of hydrazine has three characteristic IR bands at 3330–3287, 1620, and 1262 cm⁻¹ (Fig. 4, a). The 3330–3287 cm⁻¹ band can be attributed to the vibrations of N–H stretching, while the bands at 1620 and 1262 cm⁻¹ are mainly assigned to the N–H bending vibrations [21]. When N₂H₄ is adsorbed on γ -Al₂O₃, the characteristic IR band of N₂H₄ is at 1620 cm⁻¹. Adsorbed NH₃ on γ -Al₂O₃ gives three IR bands at 1620, 1484, and 1260 cm⁻¹. These bands are similar to those observed by Contour and Pannetier [9]. IR bands at 1620 and 1260 cm⁻¹

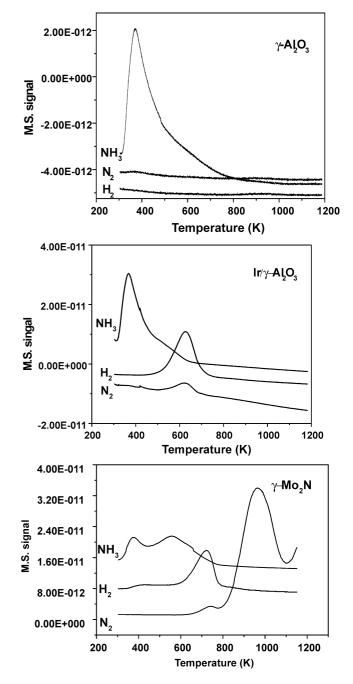


Fig. 3. The NH₃-TPD profiles (mass spectroscopy) of γ -Al₂O₃, 31.6 wt% Ir/ γ -Al₂O₃, and reduced passivated bulk Mo₂N.

could be assigned to the adsorbed NH₃ on the Lewis acid site of γ -Al₂O₃, and the band at 1484 cm⁻¹ could be attributed to ammonium ions. N₂H₄ adsorption on the reduced Ir/ γ -Al₂O₃ catalyst at 773 K shows absorbance features at 1620, 1484, and 1262 cm⁻¹ (see Fig. 4,d). Considering the results of NH₃ and N₂H₄ adsorption on γ -Al₂O₃, the band at 1484 cm⁻¹ can be attributed to the NH₄⁺, which is produced by NH₃ adsorption on the surface of the catalyst. These results suggest that hydrazine decomposition occurs on the Ir/ γ -Al₂O₃ catalyst because the band at 1484 cm⁻¹ is not observed when N₂H₄ is adsorbed on the surface of γ -Al₂O₃;

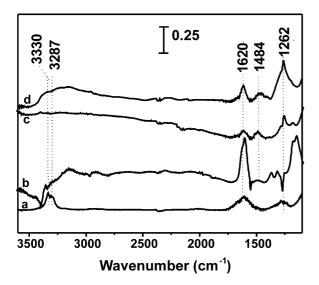


Fig. 4. IR spectra of (a) gaseous N_2H_4 , (b) N_2H_4 adsorbed on $\gamma\text{-}Al_2O_3$, (c) NH_3 adsorbed on $\gamma\text{-}Al_2O_3$, and (d) N_2H_4 adsorbed on 7.7 wt% $Ir/\gamma\text{-}Al_2O_3$ at RT.

Table 1

Assignment of the IR bands from NH₃ and N₂H₄ adsorption on γ -Al₂O₃, 7.7 wt% Ir/ γ -Al₂O₃, and 8.7 wt% Mo₂N/ γ -Al₂O₃ catalysts

Species	Gas phase	γ -Al ₂ O ₃	$Ir/\gamma \text{-}Al_2O_3$	$Mo_2N/\gamma\text{-}Al_2O_3$	Assignment
NH ₃	3337-3414				$\nu(NH)$
	1628	1620	1620	1620	$\delta(\text{NH})$
		1484	1484	1484	NH_4^+
	950	1260	1260	1260	$\delta(\text{NH})$
N ₂ H ₄	3330-3287	3330-3287	3330-3287	3330-3287	$\nu(NH)$
	1620	1601	1620	1620	$\delta(\text{NH})$
	1262		1260	1260	$\delta(NH)$
			1484	1484	NH_4^+
	1262				· ·

however, the band at 1484 cm⁻¹ is seen when N₂H₄ is adsorbed on the Ir/ γ -Al₂O₃ catalyst. The assignment of the IR bands from NH₃ and N₂H₄ adsorption on γ -Al₂O₃ and Ir/ γ -Al₂O₃ catalysts is listed in Table 1.

As described before, the fresh and reduced passivated Mo_2N/γ -Al₂O₃ catalysts have a much higher activity than the passivated Mo_2N/γ -Al₂O₃ catalyst. N₂H₄ adsorptions on passivated, reduced passivated, and fresh Mo_2N/γ -Al₂O₃ catalysts were therefore studied using in situ IR spectra (shown in Fig. 5). N_2H_4 adsorption on passivated Mo_2N/γ -Al₂O₃ catalyst gives IR bands at 3330-3287, 1620, and 1455 cm⁻¹. However, the characteristic IR bands of N₂H₄ adsorption on reduced passivated and fresh Mo_2N/γ -Al₂O₃ catalysts appear at 3330, 1620, and 1484 cm^{-1} , similar to the adsorption of N₂H₄ on Ir/γ -Al₂O₃ catalysts. The band of NH₃ adsorption on the Brønsted acid site of fresh and reduced passivated Mo₂N/ γ -Al₂O₃ catalysts (1484 cm⁻¹) shifts to lower frequencies (1455 cm^{-1}) when hydrazine is adsorbed on the passivated Mo₂N/y-Al₂O₃ catalyst. This result is possibly due to the oxynitride layer on the surface of passivated catalyst [22]. The oxygen atom on the surface of passivated Mo_2N/γ -Al₂O₃ catalyst has a signifi-

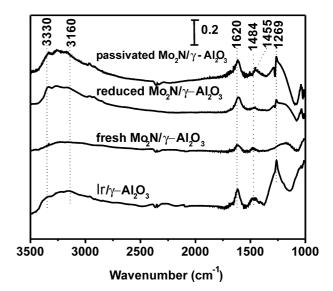


Fig. 5. IR spectra of N_2H_4 adsorption on 7.7 wt% Ir/γ -Al₂O₃ catalysts and 8.7 wt% Mo_2N/γ -Al₂O₃ catalysts with different states.

cant effect on the adsorption and reaction properties of fresh Mo_2N/γ -Al₂O₃ catalyst for hydrazine decomposition. Yang et al. found that the surface of reduced passivated Mo_2N/γ -Al₂O₃ catalyst is in a highly oxidic form; i.e., most Mo sites are in high valence state (+4). When the sample is renitrided at a temperature as high as 873 K, the surface molybdenum atoms can be reduced to $Mo^{\delta+}$ (0 < δ < 2) cations [12]. These similar catalytic results are probably because there is no obvious difference of hydrazine adsorption and reaction behaviors. These suggest that when the valence state of Mo atom on the surface of Mo_2N/γ -Al₂O₃ catalysts is lower than or equal to +4, the Mo_2N/γ -Al₂O₃ catalysts for hydrazine decomposition.

As seen in Fig. 6, CO adsorption on the fresh Mo_2N/γ -Al₂O₃ catalyst gives two characteristic IR bands at 2045 and 2200 cm⁻¹, corresponding to the adsorbed CO on the surface Mo and N sites, respectively, forming linearly adsorbed CO and NCO species [12]. When N₂H₄ is adsorbed on the CO-preadsorbed Mo₂N/ γ -Al₂O₃ catalyst, the band at 2200 shifts to 2191 cm⁻¹, while the band at 2045 cm⁻¹ disappears, accompanied by the appearance of a new band at 2240 cm⁻¹. This band may be assigned to one or several of the following possible species:

(1) NCO species,

- (2) Mo-NC (or Mo-CN) species,
- (3) Al-NC (or Al-CN) species, or
- (4) Al–NCO species [13].

At the same time, the bands at 1620 and 1484 cm⁻¹ were seen which can be attributed to N₂H₄ adsorption and reaction on the Mo₂N/ γ -Al₂O₃ catalyst. The disappearance of the band at 2045 cm⁻¹, which is assigned to the adsorbed CO on the Mo site of the Mo₂N/ γ -Al₂O₃ catalyst, suggests that N₂H₄ is adsorbed mainly on the Mo site and then de-

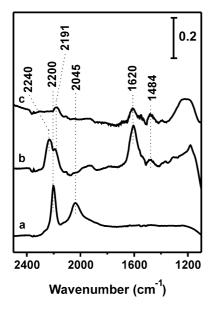


Fig. 6. IR spectra of CO and N_2H_4 coadsorbed on fresh 8.7 wt% Mo_2N/γ -Al₂O₃ catalyst at RT: (a) CO alone, (b) CO preadsorbed, then N_2H_4 , (c) N_2H_4 preadsorbed, then CO.

composes to NH₃ and N₂ over it. When N₂H₄ is preadsorbed on the Mo₂N/ γ -Al₂O₃ catalyst, subsequently adsorbed CO gives one band at 2191 cm⁻¹ and the band at 2045 cm⁻¹ does not appear. This reveals that N₂H₄ adsorption on the Mo₂N/ γ -Al₂O₃ catalyst is so strong that it covers the adsorption site of the catalyst, so the IR band of CO adsorption on the Mo sites is not observed. These results show that hydrazine is mainly adsorbed and decomposes on the Mo site of the Mo₂N/ γ -Al₂O₃ catalyst.

4. Conclusions

The performances of molybdenum nitride catalysts with different states for hydrazine decomposition have been studied in the microreactor. The catalytic activity for hydrazine decomposition over passivated molybdenum nitride is much lower than those of reduced passivated and fresh molybdenum nitride catalysts. The reaction route of hydrazine decomposition over a molybdenum nitride catalyst is similar to that of a Ir/γ -Al₂O₃ catalyst. Below 673 K, hydrazine mainly decomposes into N₂ and NH₃; when the reaction

temperature is up to 673 K, hydrazine decomposes into N_2 and NH_3 at first, and then the produced NH_3 begins to dissociate into N_2 and H_2 .

The hydrazine adsorption and reaction behaviors over Mo_2N/γ -Al₂O₃ catalysts were investigated by in situ FT-IR spectroscopy for the first time. It is found that IR spectra of adsorbed hydrazine over the reduced passivated and fresh Mo_2N/γ -Al₂O₃ catalysts are also similar to those of Ir/ γ -Al₂O₃ catalysts. This provides new evidence for the similarities of molybdenum nitride with platinum metal in catalysis. With assistance of the IR technique, N₂H₄ adsorption tests on the nitride surface, containing preadsorbed CO, suggest that the adsorption occurs mainly on the Mo site of Mo₂N/ γ -Al₂O₃ catalysts.

References

- J.A.J. Rodrigues, G.M. Cruz, G. Bugli, M. Boudart, G. Djéga-Mariadassou, Catal. Lett. 45 (1997) 1.
- [2] R. Brayner, G. Djéga-Mariadassou, G.M. Cruz, J.A.J. Rodrigues, Catal. Today 57 (2000) 225.
- [3] J.B.O. Santos, G.P. Valença, J.A.J. Rodrigues, J. Catal. 210 (2002) 1.
- [4] J.A.J. Rodrigues, G.M. Cruz, G. Djéga-Mariadassou, J.N. Hinckel, PCT Int. Appl., WO 96/33803, 1996.
- [5] X. Chen, T. Zhang, L. Xia, T. Li, M. Zheng, Z. Wu, X. Wang, Z. Wei, Q. Xin, C. Li, Catal. Lett. 79 (2002) 21.
- [6] X. Chen, T. Zhang, P. Ying, M. Zheng, W. Wu, L. Xia, T. Li, X. Wang, C. Li, Chem. Commun. (2002) 288.
- [7] W.E. Armstrong, L.B. Ryland, H.H. Voge, US patent 4 124 538, 1978.
- [8] W. Keim, in: G. Ertl, H. Knözinger, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, VCH, Weinheim, 1997, p. 1795.
- [9] J.P. Contour, G. Pannetier, J. Catal. 24 (1972) 434.
- [10] B.J. Wood, H. Wise, J. Catal. 39 (1975) 471.
- [11] R. Maurel, J.C. Menezo, J. Catal. 51 (1978) 293.
- [12] S. Yang, C. Li, J. Xu, Q. Xin, Chem. Commun. (1997) 1247.
- [13] Z. Wu, Y. Chu, S. Yang, Z. Wei, C. Li, Q. Xin, J. Catal. 194 (2000) 23.
- [14] Z. Wu, C. Li, Z. Wei, P. Ying, Q. Xin, J. Phys. Chem. B 106 (2002) 979.
- [15] G.W. Haddix, J.A. Reimer, A.T. Bell, J. Catal. 108 (1987) 50.
- [16] S. Mary, C. Kappenstein, S. Balcon, S. Rossignol, E. Gengembre, Appl. Catal. A 182 (1999) 317.
- [17] S. Balcon, C. Kappenstein, S. Mary, E. Gengembre, Appl. Catal. A 196 (2000) 179.
- [18] C. Liang, W. Li, Q. Xin, C. Li, Ind. Eng. Chem. Res. 39 (2000) 3964.
- [19] S.T. Oyama, Catal. Today 15 (1992) 179.
- [20] S.T. Oyama, J. Catal. 133 (1992) 358.
- [21] P.A. Giguère, I.D. Liu, J. Chem. Phys. 20 (1952) 136.
- [22] M. Nagai, Y. Goto, A. Irisawa, S. Omi, J. Catal. 191 (2000) 128.